Opsin gene duplication and divergence in ray-finned fish.
نویسندگان
چکیده
Opsin gene sequences were first reported in the 1980s. The goal of that research was to test the hypothesis that human opsins were members of a single gene family and that variation in human color vision was mediated by mutations in these genes. While the new data supported both hypotheses, the greatest contribution of this work was, arguably, that it provided the data necessary for PCR-based surveys in a diversity of other species. Such studies, and recent whole genome sequencing projects, have uncovered exceptionally large opsin gene repertoires in ray-finned fishes (taxon, Actinopterygii). Guppies and zebrafish, for example, have 10 visual opsin genes each. Here we review the duplication and divergence events that have generated these gene collections. Phylogenetic analyses revealed that large opsin gene repertories in fish have been generated by gene duplication and divergence events that span the age of the ray-finned fishes. Data from whole genome sequencing projects and from large-insert clones show that tandem duplication is the primary mode of opsin gene family expansion in fishes. In some instances gene conversion between tandem duplicates has obscured evolutionary relationships among genes and generated unique key-site haplotypes. We mapped amino acid substitutions at so-called key-sites onto phylogenies and this exposed many examples of convergence. We found that dN/dS values were higher on the branches of our trees that followed gene duplication than on branches that followed speciation events, suggesting that duplication relaxes constraints on opsin sequence evolution. Though the focus of the review is opsin sequence evolution, we also note that there are few clear connections between opsin gene repertoires and variation in spectral environment, morphological traits, or life history traits.
منابع مشابه
Molecular Evolution and Functional Divergence of the Cytochrome P450 3 (CYP3) Family in Actinopterygii (Ray-Finned Fish)
BACKGROUND The cytochrome P450 (CYP) superfamily is a multifunctional hemethiolate enzyme that is widely distributed from Bacteria to Eukarya. The CYP3 family contains mainly the four subfamilies CYP3A, CYP3B, CYP3C and CYP3D in vertebrates; however, only the Actinopterygii (ray-finned fish) have all four subfamilies and detailed understanding of the evolutionary relationship of Actinopterygii ...
متن کاملAn Independent Genome Duplication Inferred from Hox Paralogs in the American Paddlefish—A Representative Basal Ray-Finned Fish and Important Comparative Reference
Vertebrates have experienced two rounds of whole-genome duplication (WGD) in the stem lineages of deep nodes within the group and a subsequent duplication event in the stem lineage of the teleosts-a highly diverse group of ray-finned fishes. Here, we present the first full Hox gene sequences for any member of the Acipenseriformes, the American paddlefish, and confirm that an independent WGD occ...
متن کاملFugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes.
With about 24,000 extant species, teleosts are the largest group of vertebrates. They constitute more than 99% of the ray-finned fishes (Actinopterygii) that diverged from the lobe-finned fish lineage (Sarcopterygii) about 450 MYA. Although the role of genome duplication in the evolution of vertebrates is now established, its role in structuring the teleost genomes has been controversial. At le...
متن کاملEvolution and Expression of Tissue Globins in Ray-Finned Fishes
The globin gene family encodes oxygen-binding hemeproteins conserved across the major branches of multicellular life. The origins and evolutionary histories of complete globin repertoires have been established for many vertebrates, but there remain major knowledge gaps for ray-finned fish. Therefore, we used phylogenetic, comparative genomic and gene expression analyses to discover and characte...
متن کاملWanda: a database of duplicated fish genes
Comparative genomics has shown that ray-finned fish (Actinopterygii) contain more copies of many genes than other vertebrates. A large number of these additional genes appear to have been produced during a genome duplication event that occurred early during the evolution of Actinopterygii (i.e. before the teleost radiation). In addition to this ancient genome duplication event, many lineages wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular phylogenetics and evolution
دوره 62 3 شماره
صفحات -
تاریخ انتشار 2012